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When independent results about the phase of a reflexion are obtained, what is the best way of 
combining them ? This problem arises in the multiple isomorphous replacement method, and in a 
more general form where, in addition, part of the structure is known. The method proposed is to 
use each result to form a probability function for the phase of the reflexion ; the combination of these 
results is achieved by multiplying the probability functions together. This joint probability function 
can be fully represented by the magnitude and phase of two vectors C and Dis formed by addition 
of components from each result. From these, structure factors can be calculated which provide the 
'best' combination of all the data. A discussion of the significance of the vectors C, Dis indicates 
how estimates of the relative importance of structural information and of the isomorphous replace- 
ment method may be made. 

Introduct ion 

The isomorphous-replacement  method  has been used 
by Kendrew et al. (1960) to determine the phases of 
9,600 reflexions in a s tudy  of the protein myoglobin 
at  2 A resolution. In  the result ing Fourier  synthesis,  
most of the  atoms in the helical  polypept ide chain 
can be placed wi th  precision, and  a number  of the 
amino acid side chains can be identified. The question 
now arises, how m a y  an  extension or ref inement  of 
the structure best be made  ? The two avai lable  tech- 
n i q u e s - c a l c u l a t i o n  of phases either on the basis of 
the known par t  of the structure or by  the isomorphous- 
replacement  me thod- -wi l l  lead to different sets of 
phase angles. Is there a satisfactory way of combining 
these? The large number  of reflexions imposes a 
requirement  for a completely automat ic  method of 
combination.  At the same time, the labour of model 
bui lding is such tha t  i t  is worth doing a great deal 
of pre l iminary  computing in order to reduce the 
number  of cycles of ref inement  to a min imum.  

The problem is approached from the point  of view 
of an earlier paper  on the t r ea tment  of errors in the 
i somorphous-replacement  method (Blow & Crick, 
1959). In  a projection subject  to error, one m a y  define 
as 'best  Fourier '  the  Fourier  t ransform which has least 
mean-square difference from the ' t rue '  Fourier  trans- 
form when averaged over the whole uni t  cell. I n  the  
usual  case, one knows the magni tude  Fo of the struc- 
ture ampl i tude  with accuracy, bu t  its phase is un- 
certain. If  the relat ive probabi l i ty  of each phase is 
plot ted round a circle of radius Fo on an Argand 
diagram, the centre of gravi ty  of the probabi l i ty  
dis t r ibut ion gives the structure factor, ~, to be used 
in calculating the 'best  Fourier ' .  This m a y  be expressed 
by 

f 2~exp ( ia)P(a)da  
.0 . - - .  (1) 

o 

Here P (c~)da is the relat ive probabi l i ty  tha t  the phase 
angle o~ lies between c~ and  a + d a .  

In  the following paper  we present (a) a convenient  
analyt ica l  expression, governed by  two vectors, tha t  
represents the phase probabi l i ty  dis t r ibut ion indicated 
by  a set of isomorphous-replacement da ta ;  (b) a s imilar  
expression, governed by  one vector, tha t  represents 
the corresponding dis t r ibut ion for the 'heavy-a tom'  
or par t ia l ly  known structure method;  (c) a method  for 
the combinat ion of these to obtain the 'best  Fourier '  
when the two methods are combined s imultaneously.  
This leads to some general strategic considerations in 
the solution of large structures. 

The i s o m o r p h o u s  r e p l a c e m e n t  m e t h o d  

In  the isomorphous-replacement  method  Blow & Crick 
(1959) show tha t  a par t icular  phase angle, a, is related 
to a par t icular  error s (a )  in the  exper imenta l  da ta  of 
one isomorphous compound. This error can be allotted 
a probabi l i ty  e x p { - s 2 ( a ) / 2 E  2} on the basis of a 
Gaussian dis t r ibut ion of error with a s tandard  devia- 
t ion E, which can be est imated,  for example,  from 
data  for a centrosymmetr ic  zone. In  general, J iso- 
morphous derivatives m a y  be used simultaneously.  
In  this case 

J 

P ( a ) d a =  II  exp { -  s~(a)/2E~.}d~ 

J 

= 2(a)/2E~}da (2) exp { -  2:  ~ 
j = l  
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~: is given by 

(FH~+ s~ )e=F~+f~+2Fof i  COS ( a - q ~ )  , (3) 

where Fo is the structure amplitude of the unsub- 
st i tuted derivative, -~g~ tha t  of the j t h  heavy atom 
derivative, and f~ exp (i~¢) is the calculated structure 
factor of the substituent atoms in the j t h  compound 
(see Fig. 1). 

Fig.  1. Vector  d i ag ram showing  error  in the  i somorphous  
r ep l acemen t  technique .  

Workers who have used this method (Blow, 1958; 
Kendrew et al., 1960; Perutz et al., 1960) have so far 
used numerical methods for the evaluation of (1), 
by  calculating P(c~) from (2) and (3) at intervals of 
5 ° or 10 ° . An analytical expression for the integrals of 
(1) will now be developed. 

Since in all important  cases Fo, F m  >> s~ except 
2 where the probabilities are negligible, e~ can safely be 

neglected in (3). This leads at once to 

2 2 e~ = (F o + f ] - F~1)/2FH: + (Fofi/Fg:) cos (~ - ~ )  
and 

2 2 s i /2E ~ = e i -  c~ cos (c~ - ~ )  + 2d~ cos ~ (c~ - ~ )  

= (e~ + d~) - c: cos (a - ~:) + d~ cos 2 (~ - ~ ) ,  (4) 
where 

2 2 2 2 2 
c: = ( F ~ / - f  / - Fo)Foil/ (2F~iE i ) ,  
d:= 2 2 ~ 2 F o f  i / (4FaiEi)  , 

~ 2  2 2 2 2 2 . e:= ( n ] - f i - F o ) / ( 8 F n i E I )  

This expression shows tha t  ei (a) can be expressed 
with a good accuracy by a Fourier expansion up to the 
second-order term, and c~ and d~ may be thought  of 
as Fourier coefficients. As will be shown presently, 
they  are, however, like vectorial coefficients with 
phases ~: and 2V:. 

If follows from (4) tha t  
J J 

2 2 e~/2E~ = ~" (e~ + d~) 
/ = i  i=~ 

J J 
-:2_,'c: cos (o¢-cf:)+.,~,d: cos 2(o¢-~:)  . (5) 

i = t  i = t  

The first term of (5) results in a constant multiplier, 
which appears at top and bottom of (1). The second 
and third terms provide the required information for 
calculation of the structure factors, ~, which give rise 
to the 'best Fourier' .  

Let us now write 

J J 
C~8 cos q)l = ~ c: cos Fj; Ci8 sin ¢1 = ~ c: sin ~j; 

i=1 i = l  

J J 
D~ cos 2¢2=,~'d~ cos 21c~; D~ sin 2Cb~.=,~' d~ sin 2(Tj, 

i=t i=~ (6) 

This corresponds to forming vectors Ci~ and Di~ by 
addition of the c: and dj vectors with their correspond- 
ing phases, ~: and 2V:. (5) now reduces to 

J 

_~Y e:-2/"~'~ ~,2~ = K - Ci~ cos (~ - ~bl) + Di~ cos 2 (~x - ~b2). 

J=" (7) 
Finally, by combining (1), (2) and (7) we have 

~=Fox 

f2'~exp {i c~ } exp {Ci~ cos (c~ - ~b,)- D,8 cos (a - (1)2)}da 2 
0 

2 a e x p  {Cis cos  ( ~ x -  qh)-Dis cos 2 ( ~ -  fib2)}do~ 
0 

Putt ing to = c~- qh, 

~ = F o  exp (iq)l) 

f2=exp {ito + Ci~ cos t0 -  D~ cos 2 (to + q)~ - ¢9.)} dto 
, 0  X . . . . . . . . . . . . . . . . .  

f2aexp {Cis cos to-Dis cos 2 (to + ¢ i -  ~b2)}dto 
0 

or most briefly 

{ =  Fo exp (iq)l)g(Cis, Di~, q~ l -  q~2) . (8) 

This last form shows that  the integrals are functions 
of the three variables C~s, Dis, (q~l-q)2).  Their ratio 
is a complex number g(C~, D~8, q)l-q~2) which can 
readily be calculated on a computer. Some values are 
given in Table 1. 

The validity of the approximation introduced by 
neglecting s 2 was tested by computation of some phase 

B,  o ' ~ "  

210 ° 2 7 0  ° 
I 

a 

Fig. 2. Dashed  line shows probabi l i ty  d i s t r ibu t ion  for reflexion 
(260) of haemog lob in  wi th  a p p r o x i m a t i o n s  sugges ted  in 
this  paper ;  con t inuous  line shows the  same d i s t r ibu t ion  
calcula ted  w i t h o u t  error.  
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probability curves from data for five isomorphous 
compounds of horse haemoglobin. These were cal- 
culated both by using equation (3) (accurate) and 
equation (4) (approximate). The two curves for the 
reflexion showing the poorest agreement are shown in 
Fig. 2. The error, about 5 ° , is quite insignificant. 

All the information available about a structure 
factor from isomorphous replacements can thus be 
expressed in terms of five parameters: Fo and the real 
and imaginary parts of C~ and Di~, given by 

2 2 
( F . j - f  j - F~o)Fofj C~=.X • ~ 2 exp (iq~), 

j= t 2FB/Ej 

2 2 : Fof j  
Di~ = ~ ] - -~ -~  exp (i2q~). 

For practical application in a computer this has 
several advantages : 

(i) I t  is necessary to store only five parameters per 
reflexion as a complete record of the results, 
rather than the (3J + 1) parameters required for 
observed structure amplitudes and calculated 
heavy-atom contributions. 

(ii) If further information becomes available about a 
reflexion at a later stage, it can be readily added 
into the C~ and D~ vectors. 

(iii) Only one integration is required (or a single 
reference to a three-dimensional table of g), 
rather than J such operations which would be 
required if the isomorphous replacements were 
treated separately. 

The heavy a tom method 

A probability distribution P(c~) can also be derived 
in the case where partial knowledge of the structure 
is available, either from the positions of a small number 
of heavy atoms or from a large number of light atoms. 
The two cases are formally identical, and are here 
both referred to as the 'heavy-atom method'. 

Let f z = f z  exp (iqz) be a structure factor cal- 
culated from that  part of structure which is known. 
Sim (1959) has derived the probability function P (c~), 
by making the assumption that  the contribution of 
the unknown atoms conforms to Wilson statistics 
(1949), and has a mean square value ~. Following Sim, 
the probability may be written 

P ( c ~ ) d a = K  exp (CH COS (a-- ~gH))d~ , (9) 
where 

CH=2FofH/Z  , 
and 

K = 2ZIo(CH) . 

I0 is the modified zero-order Bessel function of 
imaginary argument iCH. 

Substituting (9) into (1), and changing the variable 
to yJ = ~ -  qH, gives 

f2"cos ~ exp {CH COS ~p}dyJ 
0 ~=Fo exp (iqgH) ~ , (10) 

f2~exp {CH COS yJ}dyJ 
,0 

which may be shown to reduce to 

~=Yo exp (iq~H)II(CH)/Io(CH). (11) 

(Sire, 1960; Watson, 1922). 
One feature of Sim's treatment which may readily 

be improved is the assumption that  the 'known' 
part of the structure is perfectly accurate. In addition 
to the contribution to Z from the L atoms whose 
position is unknown, there will be a further contribu- 
tion due to error in the parameters of the H 'known' 
atoms. If the hth known atom has been assigned a 
position ra, while its true position is ra+~h, and its 
scattering factor is fa, then 

H 

(fH)true= • fa  exp {2ai(rh+~i~). s}.  
h = l  

Here s is the reciprocal-lattice vector, and assuming 
the angle 2~6a. s is small, 

H 

(fH)true~ (fH)ca~c. + 2 2~i(8a. s)fh exp {2aira. s}.  
h = l  

The last term is a vector sum made up of the contribu- 
tions of each 'known' atom to the total structure 
factor. Its mean square value is 

H 

~ s ~  ±" 2 ~fg, 
h = l  

where ah is the r.m.s, value of 6a, or the standard error 
in position of the hth atom. This quantity needs to 
be added to the mean square contribution of the 
'unknown' atoms, giving 

L H 

ahfh. (]2) 
/ = I  h = l  

This latter term, although probably negligible in the 
early stages, becomes increasingly important in later 
cycles when more of the structure is known. This is 
particularly true of the terms with large s, or if atomic 
positions determined at a low resolution (small s) 
are used for phase determination at a higher resolution. 

Alternatively, Z could be estimated for a range of 
s by the study of a centric zone, in the same way as 
Ej has been determined for the isomorphous-replace- 
ment technique. 

I t  has been assumed that  each atom of the structure 
can be assigned into one of the two groups ' known'  
and 'unknown'. In the case of an uncertain atom a 
possible procedure would be to put part of its weight 
into the 'known' set and part into the 'unknown'. 
However, while this is the best procedure for deter- 
mining the rest of the structure, it will not decide 
whether this atom really exists. 
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T a b l e  1 The function g (x, y, co) 
The funct ion  is set out  in blocks of cons tan t  w. 

The left h a n d  blocks give 100 x the magn i tude  of ~ and  the  r ight  hand  blocks its phase in degrees 

I g l  x I00 ~T~ g degrees 

0 
0.5 
1.0 
1.5 
2.0 
2-5 
3.0 
3- 5 
4".0 
4.5 
5- 0 

Y= o 0.5 1.o 1.5 2.0 2.5 3.0 ~.5 4.0 

60 435 ~ 20 15 '12 10 18 170 
29 22 18 1" 

70 60 48 38 30 23 19 16 14 
76 67 57 46 36 29 2== 20 17 
81 7~ 64 53 43 35 29 24 21 
84 78 69 59 49 40 33 28 24 
86 81 74 64 55 46 38 32 28 
88 84 77 69 60 51 43 36 31 
89 86 80 73 64 55 47 ~0 35 

Y= 0 0.5 1.0 1.5 2.0 2.5 3,0 3.5 4.0 

w = O  ~ 

360 360 360 360 360 360 360 360 360 
360 360 360 360 360 360 360 360 360 
360 360 360 360 360 360 360 360 360 
360 360 360 3c,0 360 360 360 360 360 
360 360 360 360 360 360 36O 360 36O 
360 360 360 360 360 36(3 360 360 360 
360 360 360 360 360 360 360 36(} 360 
360 360 360 360 360 360 360 360 360 
360 360 360 360 360 360 360 360 36G 
360 360 360 360 360 360 3@a 360 360 

..,, = 150 

.5 
1.0 
1.5 
2.0 
2.5 
3.0 
~-5 
4.0 
4.5 
5.0 

204 20 1~ 10 11~ 1~ 12 G 102 1Q 
45 37 31 27 26 25 25 24 24 
60 51 44 36 36 36 
70 62 54 4~ ,~ 36 46 46 46 46 
76 69 62 58 55 54 54 54 55 
81 75 69 64 62 62 62 62 62 
84 79 74 70 68 67 68 68 68 
86 82 78 74 72 ~2 ]3 73 ~4 
88 85 81 78 76 76 76 77 78 
89 86 83 80 79 79 BO 81 B~ 

360 9 20 31 41 4B 53 57 60 
360 8 19 31 41 48 53 5? 59 
360 8 19 30 40 47 53 56 59 
360 8 18 29 39 46 52 56 58 
360 7 17 27 37 45 51 55 58 
360 7 16 26 36 44 50 54 57 
360 6 15 24 34 42 48 53 56 
360 6 14 23 32 41 47 52 55 
360 5 13 21 31 39 46 50 54 
360 5 12 20 29 37 44 49 53 

w = 300 

o 
0.5 
1.o 
1.5 
2.0 
2.5 
3.0 
3;5 
4.0 
4.5 
5.0 

45 41 40 40 41 42 43 43 44 
60 56 55 55 57 58 59 59 60 
70 66 65 66 68 70 71 ]2 ]2 
76 73 73 74 76 78 79 80 81 
81 79 78 79 81 83 85 66 86 
84 82 82 83 85 87 88 89 90 
86 85 84 86 88 89 91 92 92 
88 87 86 88 89 91 92 93 94 
89 88 88 89 90 92 93 94 95 

360 13 26 35 41 46 49 51 52 
360 12 25 34 41 46 48 50 52 
360 12 24 33 4G 45 48 5(3 51 
360 11 22 32 39 43 46 49 50 
360 10 21 30 37 41 45 48 49 
360 10 20 29 36 40 44 46 48 
360 9 18 27 34 39 43 45 47 
360 8 17 26 32 37 41 44 46 
360 8 16 24 31 36 40 43 45 

o 
0-5 
1.0 
1.5 
2-0 
2.5 
3.0 
)-5 
4.0 
4.5 
5.0 

0 0 0 O 0 0 0 0 O 
24 25 26 28 29 30 31 31 32 
45 46 48 51 53 55 56 57 5"/ 
60 61 64 67 70 72 "]3 74 "15 
70 71 74 77 80 82 83 64 85 
76 78 81 84 86 88 89 90 91 
81 82 85 87 89 91 92 93 94 
84 85 87 89 91 93 94 95 95 
86 87 89 91 93 94 95 96 96 
88 89 90 92 93 95 95 96 97 
89 90 91 93 94 95 96 96 97 

w = 45 ° 

360 14 24 31 35 37 39 40 41 
360 13 23 30 34 37 38 ,40 40 
360 13 22 29 33 36 38 39 40 
360 12 21 28 32 35 37 38 39 
360 11 20 27 31 34 36 37 38 
360 1o 19 25 30 33 35 36 37 
360 10 18 24 29 32 34 35 36 
360 9 17 23 27 30 33 34 36 
360 9 16 22 26 29 32 33 35 
360 8 15 21 25 28 31 32 34 

w = 60 o 

0.5 
1;o 
1,5 
2-0 
2.5 
3.0 
3-5 
4. 0 
4.5 
5.0 

0 0 

45 50 55 59 6~ 63 65 65 
60 65 70 75 -/7 79 81 61 82 
70 75 80 83 86 68 89 90 90 
76 81 85 88 90 92 93 93 94 
81 85 88 91 92 94 95 95 96 
84 87 90 92 94 95 95 9,6 96 
86 89 91 93 94 95 96 96 97 
88 90 92 94 95 96 96 97 97 
89 91 93 94 95 96 96 97 97 

360 11 17 22 24 25 26 27 27 
360 10 17 21 24 25 26 27 27 
360 10 16 20 23 24 25 26 27 
360 9 16 20 22 24 25 26 26 
360 9 15 19 21 23 24 25 26 
360 8 14 18 20 22 23 24 25 
360 8 13 17 19 21 23 24 24 
360 '7 12 16 19 20 22 23 24 
360 7 12 15 18 20 21 22 23 
360 6 11 15 17 19 20 22 22 

o 
0.5 
'1.0 
1.5 
2.0 
2-5 
~.0 
3.5 
4.0 
4.5 
5.0 

45 52 59 63 66 68 69 70 71 
~o 68 ~_~ X~ 8~ 83 84 8s 8s 

76 83 87 90 92 93 94 95 95 
81 86 90 92 94 95 95 96 96 
84 88 91 99 94 95 96 96 97 
86 90 92 94 95 96 96 97 97 
88 91 93 94 95 96 97 97 97 
89 92 93 95 96 96 97 97 97 

v," = 75 ° 
. . . . . .  

360 6 9 11 12 13 I )  14 14 
360 6 9 11 12 13 13 13 14 
360 5 8 10 12 12 13 13 13 
360 5 8 10 11 12 12 13 13 
360 5 8 10 11 11 12 12 13 
360 4 7 9 10 11 12 12 12 
3~0 4 7 9 10 11 11 12 12 
360 4 6 8 9 10 11 11 12 
360 4 6 8 9 10 11 11 11 
360 3 6 7 9 10 10 11 11 

o 
0.5 
1,.o 
1.5 
2.0 
2.5 
3.0 
3.5 
4.0 
4.5 
5.0 

45 53 60 64 67 69 71 72 72 
60 69 75 79 82 84 85 86 87 
70 78 83 87 89 91 92 92 93 
76 83 88 90 92 94 94 95 95 
81 86 90 92 94 95 96 96 97 
84 89 91 93 95 95 96 97 97 
86 90 92 94 95 96 96 ~)7 97 
88 91 93 94 95 96 97 97 97 
89 92 94 95 96 96 97 97 97 

w = 90 ° 
. . . . . . . . .  

360 

360 0 0 0 0 G O G 0 
360 0 0 0 0 G o o o 
360 0 0 0 0 0 O 0 0 
360 0 0 0 0 0 0 0 0 
360 0 0 0 0 0 0 0 0 
3~ 0 o 0 0 o 0 0 0 
360 0 0 0 0 0 0 0 0 
360 0 0 0 0 0 0 0 0 
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Referring again to equat ion (10), and  comparing it 
with the funct ion g defined by  equat ion (8), it  is 
evident  tha t  for the heavy  atom method  

= Fo exp (iq)H) ~ (CH, O, O) . 

The results of the heavy-a tom method have thus been 
reduced to the same mathemat ica l  form as those of 
the isomorphous-replacement method,  and it  will next  
be shown tha t  they  m a y  readi ly be combined. 

The combinat ion  of the i s o m o r p h o u s - r e p l a c e m e n t  
and the h e a v y - a t o m  method  

The case m a y  now be considered, which has arisen in 
the myoglobin  work of Kendrew, where isomorphous- 
replacement  da ta  are available,  and also the structure 
is par t ia l ly  known. In  this case the two contributions 
to P(c~) mus t  be mul t ip l ied  together, with the result  

P(oc)da = e x p  {Cis cos (a - -  ¢1) 
+ c n  cos ( ~ - ~ v ~ ) - D ~  cos 2 ( ~ - q ~ . ) } d ~ .  

C,~ and  CH m a y  be combined in just  the same way 
as the c/s  were combined in equat ion (6): 

J 
C cos ¢ = ~ Y c j  cos ( a - ~ j )  +CH COS (a--(pn) 

j=l  

J 
C sin ¢ = ~  cj sin ( a -  ~j) +CH sin (a- -  qg) • (13) 

i=l  

By exact ly  the same steps as lead to equation (8) 
we reach the result  

~=Fo exp (i~b) g(C, D~s, ~b-  ¢2) • (14) 

Thus all avai lable  informat ion can be summarized  in 
terms of three variables which determine the definite 
integrals of g. 

The same funct ion g(x, y, co) gives analyt ical  ex- 
pression to the weighting scheme of Blow & Crick 
(1959) when applied to the results from any  number  of 
isomorphous replacements and the heavy  atom 
method.  The various cases are set out in Table 2. 

E~ and  2: m a y  be determined with moderate  
accuracy by  analysis  of the results from a centro- 
symmetr ic  zone, in the way demonst ra ted  by  Blow 

Table 2. The form of the function g in various methods 
'Heavy atom' method g(cu, 0, 0) (Sire, 1960) 

Single isomorphous pair g(cl, dl, 0) (Blow & Ross- 
mann, 1961) 

Single isomorphous pair 
combined with 'heavy 
atom' method g(C1, dl, (/)--~1) 

Multiple isomorphous 
replacement method g(Cis, Dis, q51- ~2) 

Multiple isomorphous 
replacement combined 
with 'heavy atom' 
method g(C, Dis, ~)- ¢2) 

& Crick (1959). In  addition, a theoretical  es t imate  
of 2: m a y  be made  from (12). Although errors in Ej  
and ~ will result  in inaccurate  relat ive weighting of 
the different  sets of data,  it  is unl ikely tha t  these wil] 
have an impor tan t  effect on the phase angles. 

The function t~ (x, y, ¢o) 
The nature  of the function 

g(x, y, co)= 
f 2~exp {iv/+x cos ~ - y  cos 2(y~+ w)}dv 2 

0 

f 2~exp {x cos V~-y cos 2(yJ+ w)}dyJ 
,0 

(15) 

may now be considered. I t  can be thought  of as 
representing the centre of gravi ty  of a circular wire of 
radius un i ty  with a densi ty  

exp {x cos yJ - y cos 2 (yJ + co) }. 

Since the centre of gravi ty  of such a wire can never 
be outside the wire, i t  follows tha t  the magni tude  of 
g always lies between 0 and 1, approaching un i ty  as 
we approach cer ta in ty  about  the true phase of a 
reflexion. 

g mus t  always be real if the weight dis t r ibut ion is 
symmetr ica l  about  yJ--0. This occurs not  only when 
y = 0 (as in the case of heavy  atom technique) but  also 
when ]col--0, ~/2, ~, . . . .  In  the case of a single iso- 
morphous pair  (J= 1) (8) reduces to ~ =Fo exp ( i~l )g  
(cl, dl, 0). We know tha t  this  case results in a prob- 
abi l i ty  dis t r ibut ion for the phase angle a which is 
symmetr ica l  about  ~1. Thus w m a y  be regarded as 
expressing the a symmet ry  of the phase probabi l i ty  
distribution. 

When  x >~ y then  x cos y~ is the governing factor of 
the probabi l i ty  distr ibution.  Hence we obtain a 
unimodal  dis t r ibut ion with a peak whose sharpness 
increases as x becomes large. Conversely when y 
becomes >~ x the y cos2(yJ+co) term governs the 
probabi l i ty  distr ibution.  This results in a bimodal  
dis t r ibut ion with peaks tending towards 7e/2-co, 
3~ /2 -09 .  If w=O, g ~ 0 as y increases; bu t  for other 
values of 09 ( implying an asymmetr ic  distr ibution),  
as y increases and sharpens the dis t r ibut ion ]~,[ in- 
creases, and its phase swivels round towards ( ~ / 2 -  w). 
For smaller, but  still considerable values of y, the 
probabi l i ty  dis t r ibut ion has two peaks, which coalesce 
into one as y becomes small  compared to x. I t  can 
easily be shown tha t  the dis t r ibut ion must  be unimodal  
when x _> 4y and co--0. 

The s trategy  of a structure  determinat ion  

Apart  from its direct applicat ion to the combinat ion 
of s t ructural  and isomorphous-replacement  data,  the 
analysis  given above is useful in evaluat ing the  



646 T H E  R E F I N E M E N T  OF S T R U C T U R E S  

relat ive meri ts  of different strategies in a large struc- 
ture determinat ion.  

Firs t  consider the effect of increasing the number  
of isomorphous compounds. This m a y  be done by  
considering the effect of adding one member  to the 
vector summat ion  for Cis and Dis, defined by  (6). 
I t  m"ay be seen from (3) and (4) tha t  if s0 is a phase 
angle for which s j = 0 ,  so tha t  

2 2 2 2Foil cos ( s o -  ~ )  = FBj -- Fo --f} , 
then 

c~ = 4dj- cos (so - ~j) , 

2 2 while d~ ~ f i / 4 E  i is a positive number .  If  the phases 
are assumed to be random, the problem corresponds 
to a random-walk  problem, giving a mean  square 
value for D~s 

J J 

<D~s>=.~, d ~ ~.~, f~/(16E~.) . (16) 
i=1 i=1 

Thus in the case where the fi/Ej's are of the same 
order for the different isomorphous derivatives,  the 
r.m.s, value of Dis increases as VJ. Note tha t  two 
isomorphous subst i tuents  j ,  k at closely adjacent  sites 
will lead to similar  values of ~j, ~ ,  making  Dis larger 
t han  it would be if the phases were random. 

For a rough approximat ion  it can be assumed tha t  
c¢0 is the ' t rue '  phase, and has the same value for all j .  
I n  the vector summat ion  

J 

C ~ s = ~  4dj cos ( s 0 -  q~) exp (iqj) 
] = 1  

it  is seen tha t  terms with phase ~j far from s0 are 
scaled down by  the factor cos ( s o - ~ ) ,  and thus Cis 
tends to have the phase of a0. Expand ing  

J 

Cis = ~ 4dj [cos so cos 9 ~j + sin s0 sin ~ cos ~- 
i = 1  

+ i cos a0 sin q¢ cos ~j + i sin so sin e ~¢]. 

Assuming, as before, a random dis t r ibut ion of ~j, 
we see tha t  the mean  value of Cis is 

J ] 

<Cis>=_~2d~ exp (is0) ~ "  [f~/2E~] exp (iao). (17) 
?'=1 j = l  

If all <f~./~.> are of the  same order of magnitude, 
<[Cts]> increases as J and  <]C~I>/<D~,>½ as VJ. This 
expresses the fact that ,  as the number  of isomorphous 
compounds is increased, the dis t r ibut ion is sharpened 
and there is a decrease of their tendency towards 
being bimodal.  

Consider now the heavy-a tom method. If a large 
number  of atomic positions have been found in a 
par t ia l ly  known structure, we m a y  assume tha t  Wilson 
statistics apply,  and the mean  square value of fH is 

H 

< f ~ > = ~ f ~  , 
h = l  

while <Fo~>= <f2>+X.  Hence the mean square value 
of CH is 

<c~ > = 4 <Fo2 } <f~ }/(<F~>- <f~>)2. 

Let <,f~>=r<F2o> so tha t  we m a y  say briefly 'a fractiorr 
r of the structure is known'.  Then the r.m.s, value 
of CH is 

<c~>½=2r½/(1--r) . (18) 

Remember ing  tha t  C characterizes the sharpness of 
the phase probabi l i ty  dis t r ibut ion and thus  the  
accuracy of the phase determinat ion,  we are now in 
a position to answer questions about  the relat ive 
power of the isomorphous-replacement method and 
the heavy  a tom method under  specific conditions. 
Suppose, for example,  a fraction r of the structure has 
been revealed by  using J isomorphous replacements,  
is i t  more advantageous to use one more isomorphous 
replacement,  or to use the heavy-a tom method?  We 
can calculate the probable value of ]C] in each case. 
Let  <Cj> be the mean  value of C when J isomorphous 
replacements  are used. Then from (17) 

C - ]J2+1 J + 1 <cJ+o= ~ - ~  exp (~s0) ~ --y-  <c&; 
J:~ J + l  

while using (18), adding heavy-a tom data  gives 

2r 

I t  m a y  be ment ioned  tha t  the isomorphous-replace- 
ment  method tends to increase Dis as well as C, so 
tha t  a comparison based only on the value of [C[ 
tends to over-estimate the value of the isomorphous- 
replacement  method. Nevertheless, to make  the ex- 
ample more definite, let us consider typical  da ta  for 
the protein haemoglobin. These would be 

<f2}=1002, E j = 5 0  so tha t  <Cj>=2J.  
Thus 

<Cj+l> e ~ 4 ( J +  1) 2 

and 2r 
<C~+.> ~ 4J2+ (l_----r) ~ .  

The heavy-a tom method will therefore be more 
powerful if the lat ter  quan t i ty  is greater, name ly  if 
r > 0 . 7 3  ( J = 2 ) ,  0.77 ( J = 3 ) ,  0.79 ( J = 4 ) .  (In the  case 
J = 1 it would certainly be necessary to take account 
of the effect of Dis). 

These results are sensitive to the relat ive magni tudes  
of the inaccurately known Ej  and X values. This type  
of calculation can therefore only give an order of 
magni tude  for r. 

More detailed comparisons could readi ly be made. 
From the above it can be seen how quant i ta t ive  
expression can be given to the convergence of sets of 
isomorphous-replacement data  or heavy-a tom refine- 
ments,  towards an accurate set of phases. In  principle 
it would be possible to go fur ther  and  use the actual  
values of l g] which are the 'figures of meri t '  (Dickerson 
et al., 1961) to give the s tandard  error of electron 
densi ty (Blow & Crick, 1959). 
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This study has been stimulated by a fruitful inter- 
change of ideas with other members of this Unit. In 
particular we are indebted to Dr F. H. C. Crick, who 
we hope will recognize his influence throughout the 
work. 

The tabulation of the function g(x, y, eg) was made 
possible by the use of the University of Cambridge 
Mathematical Laboratory's electronic computer ED- 
SAC 2. 
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Preparation and Structure of BasTa~O,s and Related Compounds* 

BY FRANCIS GALASSO AND LEWIS KATZ 
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(Received 3 August 1960) 

The preparation and characterization of a new ternary oxide of tantalum, BasTa4015 , and isomor- 
phous compounds, SrsTa4Ols and Basl~b4O15 , are described. The barium tantalum compound was 
found to belong to the trigonal system; the axes of the primitive hexagonal cell are a--5.79, 
c -- 11.75 A. Single crystals of BasTa4015 grown in a lead II oxide flux were used in determining the 
structure. Anion deficiencies have been produced in these compounds by preparing them with 
£etravalent niobium and tantalum. 

I n t r o d u c t i o n  

In  a ,general survey of the barium-tantalum-oxygen 
:system, the existence of several phases have been 
noted. A,t ~ ratio of barium to tantalum of one half, 
two diif~exent phases have been reported, one a 
:hexagonal phase, Ba0.44Ta02.9~ (Galasso, Katz & 
Ward, 1958), and the other a tetragonal phase, 
Ba0.sTa08 (~Galasso, Katz & Ward, 1959a) with the 
tetragonal bronze structure (Magn41i, 1949). When the 
Ba/Ta "rat~o was increased to three, the phase 
Ba(Ba0.sTa0.~),Oe.75 was obtained with an ordered cubic 
perovsldte structure (Brixner, 1958; Galasso, Katz & 
Ward, 1959b). At an intermediate ratio, the compound 
BasTa4Ol~ has been identified. The preparation and 
:structure o~ this compound and isomorphous phases 
:is the subject of this paper. 

Exper imen ta l  

Preparation of BazTa4015 
The best-preparation of BasTa4015 resulted from 

* Part  of.this.research was sponsored by the Office of Naval 
l~esearch. Reproduc£ion in whole or in part is permitted for 

.any purpose of .the United States Government. 

mixing barium carbonate in 2% excess of the amount 
indicated in the reaction 

5 BaC03 + 2 Ta205 -> BasTaa015 + 5 CO2 

and heating in air at 1150 °C. for 24 hr. The white 
product obtained gave an X-ray powder pattern 
which was indexed with the aid of single crystal data 
on the basis of a hexagonal cell with a=5.79 A and 
c= 11.75 J~. 

The density was found pycnometrically to be 
7.9 g.cm. -8, and using the above parameters the unit 
cell content weight was calculated to be 1622, as 
compared to 1650 for the formula BasTa4015. Analysis 
gave 44.04% Ta, 42.70% Ba, as compared to the 
theoretical 43.85% Ta, 41-64% Ba for BasTa4Ol~. 

Preparation of BasTa~V01~ 
The compound BasTa~V013 was prepared in an 

evacuated sealed silica capsule using tantalum pen- 
toxide and tantalum metal as a source of tantalum 
IV, and barium oxide as the source of barium. As is 
frequently the case with oxygen deficient compounds, 
the powder pattern of the reduced (blue) phase could 
be indexed using the same parameters as for the 
oxidized phase. 


